Filtration-processed biomass nanofiber electrodes for versatile bioelectronics | Journal of Nanobiotechnology

0
4


  • Nawaz A, Liu Q, Leong WL, Fairfull-Smith KE, Sonar P. Natural electrochemical transistors for in vivo bioelectronics. Adv Mater. 2021;33:2101874.

    Article 
    CAS 

    Google Scholar
     

  • Chadha U, Bhardwaj P, Agarwal R, Rawat P, Agarwal R, Gupta I, Panjwani M, Singh S, Ahuja C, Selvaraj SK, Banavoth M, Sonar P, Badoni B, Chakravorty A. Current progress and progress in biosensors expertise: a important evaluate. J Indust Engineer Chem. 2022;109:21–51.

    Article 
    CAS 

    Google Scholar
     

  • Ren Z, Yang J, Qi D, Sonar P, Liu L, Lou Z, Shen G, Wei Z. Versatile sensors primarily based on natural–inorganic hybrid supplies. Adv Mater Technol. 2021;6:2000889.

    Article 
    CAS 

    Google Scholar
     

  • Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540:379–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irimia-Vladu M. “Inexperienced” electronics: biodegradable and biocompatible supplies and gadgets for sustainable future. Chem Soc Rev. 2014;43:588–610.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Chen D, Jiang Okay, Shen G. New insights and views into organic supplies for versatile electronics. Chem Soc Rev. 2017;46:6764–815.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Yokota T, Someya T. Pure biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev. 2021;121:2109–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teshima T, Onoe H, Aonuma H, Kuribayashi-Shigetomi Okay, Kamiya Okay, Tonooka T, et al. Magnetically responsive microflaps reveal cell membrane boundaries from a number of angles. Adv Mater. 2014;26:2850–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and capabilities. Nat Mater. 2013;12:584–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azuma Okay, Ifuku S, Osaki T, Okamoto Y, Minami S. Preparation and biomedical functions of chitin and chitosan nanofibers. J Biomed Nanotechnol. 2014;10:2891–920.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, et al. Antimicrobial and anti inflammatory exercise of chitosan-alginate nanoparticles: a focused remedy for cutaneous pathogens. J Make investments Dermatol. 2013;133:1231–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui T, Yu J, Li Q, Wang CF, Chen S, Li W, et al. Giant-scale fabrication of strong synthetic skins from a biodegradable sealant-loaded nanofiber scaffold to pores and skin tissue through microfluidic blow-spinning. Adv Mater. 2020;32:e2000982.

    Article 
    PubMed 

    Google Scholar
     

  • Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, et al. The inflammatory responses to silk movies in vitro and in vivo. Biomaterials. 2005;26:147–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiffman JD, Schauer CL. A evaluate: electrospinning of biopolymer nanofibers and their functions. Polym Rev. 2008;48:317–52.

    Article 
    CAS 

    Google Scholar
     

  • Jin J, Lee D, Im HG, Han YC, Jeong EG, Rolandi M, et al. Chitin nanofiber clear paper for versatile inexperienced electronics. Adv Mater. 2016;28:5169–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terkan Okay, Zurita F, Khalaf TJ, Rinklin P, Teshima T, Kohl T, et al. Mushy peripheral nerve interface created from carbon nanotubes embedded in silicone. APL Mater. 2020;8:101111.

    Article 
    CAS 

    Google Scholar
     

  • Tybrandt Okay, Khodagholy D, Dielacher B, Stauffer F, Renz AF, Buzsaki G, et al. Excessive-density stretchable electrode grids for persistent neural recording. Adv Mater. 2018;30:e1706520.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lienemann S, Zotterman J, Farnebo S, Tybrandt Okay. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation. J Neural Eng. 2021;18:045007.

    Article 

    Google Scholar
     

  • Fujita H, Hao M, Takeoka S, Miyahara Y, Goda T, Fujie T. Paper-based wearable ammonia fuel sensor utilizing natural–inorganic composite PEDOT:PSS with iron(III) compounds. Adv Mater Technol. 2022;7:2101486.

    Article 
    CAS 

    Google Scholar
     

  • Inui T, Koga H, Nogi M, Komoda N, Suganuma Okay. A miniaturized versatile antenna printed on a excessive dielectric fixed nanopaper composite. Adv Mater. 2015;27:1112–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasuga T, Yagyu H, Uetani Okay, Koga H, Nogi M. “Return to the soil” nanopaper sensor system for hyperdense sensor networks. ACS Appl Mater Interfaces. 2019;11:43488–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling S, Li C, Jin Okay, Kaplan DL, Buehler MJ. Liquid exfoliated pure silk nanofibrils: functions in optical and electrical gadgets. Adv Mater. 2016;28:7783–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajian A, Wang Z, Berglund LA, Hamedi MM. Cellulose nanopaper with monolithically built-in conductive micropatterns. Adv Electron Mater. 2019;5:1800924.

    Article 

    Google Scholar
     

  • Hussain A, Collins G, Yip D, Cho CH. Useful 3-D cardiac co-culture mannequin utilizing bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng. 2013;110:637–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Jbour DN, Beg DM, Gimbun J, Alam MAKM. An outline of chitosan nanofibers and their functions within the drug supply course of. Curr Drug Deliv. 2019;16:272–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3:434–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M. Neural stimulation and recording with bidirectional, mushy carbon nanotube fiber microelectrodes. ACS Nano. 2015;9:4465–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, Chen C, Solar X, Peng H. Implantable fiber biosensors primarily based on carbon nanotubes. Acc Mater Res. 2021;2:138–46.

    Article 
    CAS 

    Google Scholar
     

  • Wang FJ, Lu FS, Cui M, Shao ZQ. Biocompatible microcapsule of carboxymethyl cellulose/chitosan as drug service. Adv Mater Res. 2015;1118:227–36.

    Article 

    Google Scholar
     

  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Meals Drug Anal. 2014;22:116–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT. Clear conductive nanofiber paper for foldable photo voltaic cells. Sci Rep. 2015;5:17254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tybrandt Okay, Vörös J. Quick and environment friendly fabrication of intrinsically stretchable multilayer circuit boards by wax sample assisted filtration. Small. 2016;12:180–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Offenhausser A, Ingebrandt S, Mayer D. PEDOT:PSS-Primarily based Bioelectronic gadgets for recording and modulation of electrophysiological and biochemical cell alerts. Adv Healthc Mater. 2021;10:e2100061.

    Article 
    PubMed 

    Google Scholar
     

  • Tsukada S, Nakashima H, Torimitsu Okay. Conductive polymer mixed silk fiber bundle for bioelectrical sign recording. PLoS ONE. 2012;7:e33689.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, et al. PEDOT:PSS for versatile and stretchable electronics: modifications, methods, and functions. Adv Sci. 2019;6:1900813.

    Article 
    CAS 

    Google Scholar
     

  • Teshima T, Nakashima H, Kasai N, Sasaki S, Tanaka A, Tsukada S, et al. Cellular silk fibroin electrode for manipulation and electrical stimulation of adherent cells. Adv Funct Mater. 2016;26:8185–93.

    Article 
    CAS 

    Google Scholar
     

  • Xia Y, Ouyang J. Important totally different conductivities of the 2 grades of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), clevios P and clevios PH1000, arising from totally different molecular weights. ACS Appl Mater Interfaces. 2012;4:4131–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong J, Jiang F, Zhou W, Liu C, Xu J. Extremely electrical and thermoelectric properties of a PEDOT:PSS thin-film through direct dilution–filtration. RSC Adv. 2015;5:60708–12.

    Article 
    CAS 

    Google Scholar
     

  • Kim S, Sanyoto B, Park WT, Kim S, Mandal S, Lim JC, et al. Purification of PEDOT:PSS by ultrafiltration for extremely conductive clear electrode of all-printed natural gadgets. Adv Mater. 2016;28:10149–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metreveli G, Wågberg L, Emmoth E, Belák S, Strømme M, Mihranyan A. A size-exclusion nanocellulose filter paper for virus removing. Adv Well being Mater. 2014;3:1546–50.

    Article 
    CAS 

    Google Scholar
     

  • Kim J-Y, Lee W, Kang YH, Cho SY, Jang Okay-S. Moist-spinning and post-treatment of CNT/PEDOT:PSS composites to be used in natural fiber-based thermoelectric turbines. Carbon. 2018;133:293–9.

    Article 
    CAS 

    Google Scholar
     

  • Mannayil J, Methattel Raman S, Sankaran J, Raman R, Ezhuthachan MKJ. Resolution processable PEDOT:PSS/multiwalled carbon nanotube composite movies for versatile electrode functions. Phys Standing Solidi A. 2018;215:1701003.

    Article 

    Google Scholar
     

  • Tune E, Li J, Gained SM, Bai W, Rogers JA. Supplies for versatile bioelectronic techniques as persistent neural interfaces. Nat Mater. 2020;19:590–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniele MA, Knight AJ, Roberts SA, Radom Okay, Erickson JS. Candy substrate: a polysaccharide nanocomposite for conformal digital decals. Adv Mater. 2015;27:1600–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Ko Y, Kwon G, Kim UJ, You J. Micropatterning silver nanowire Networks on cellulose nanopaper for clear paper electronics. ACS Appl Mater Interfaces. 2018;10:38517–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zheng N, Cao Y, Wang F, Wang P, Ma Y, et al. Climbing-inspired twining electrodes utilizing form reminiscence for peripheral nerve stimulation and recording. Sci Adv. 2019;5:eaaw1066.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivnay J, Wang H, Fenno L, Deisseroth Okay, Malliaras GG. Subsequent-generation probes, particles, and proteins for neural interfacing. Sci Adv. 2017;3:e1601649.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehler C, Carli S, Fadiga L, Stieglitz T, Asplund M. Tutorial: pointers for standardized efficiency checks for electrodes supposed for neural interfaces and bioelectronics. Nat Protoc. 2020;15:3557–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Okay, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006;6:2043–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, et al. Transcriptome evaluation of the desert locust central nervous system: manufacturing and annotation of a Schistocerca gregaria EST database. PLoS ONE. 2011;6:e17274.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knebel D, Rillich J, Ayali A, Pflüger HJ, Rigosi E. Ex vivo recordings reveal desert locust forelimb management is uneven. Curr Biol. 2018;28:1290–1.

    Article 

    Google Scholar
     

  • Castillo AE, Rossoni S, Niven JE. Matched short-term despair and restoration encodes interspike interval at a central synapse. Sci Rep. 2018;8:13629.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows M, Morris G. The kinematics and neural management of high-speed kicking actions within the locust. J Exp Biol. 2001;204:3471–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zurita F, Del Duca F, Teshima T, Hiendlmeier L, Gebhardt M, Luksch H, et al. In vivo closed-loop management of a locust’s leg utilizing nerve stimulation. Sci Rep. 2022;12:10864.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here