Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor

0
4


  • Basov, D. N., Fogler, M. M. & de Abajo, F. J. G. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

  • Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2016).

    Article 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photonics 11, 356–360 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions. Phys. Rev. B. 94, 081402 (2016).

    Article 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martin, L. W. & Rappe, A. M. Skinny-film ferroelectric supplies and their purposes. Nat. Rev. Mater. 2, 16087 (2016).

    Article 

    Google Scholar
     

  • Chang, Ok. et al. Discovery of strong in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metallic. Nature 560, 336–339 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological alternatives. ACS Nano 15, 9229–9237 (2021).

    Article 

    Google Scholar
     

  • Chang, Ok. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fei, R., Kang, W. & Yang, L. Ferroelectricity and part transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

    Article 

    Google Scholar
     

  • Shi, G. & Kioupakis, E. Anisotropic spin transport and powerful visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 15, 6926–6931 (2015).

    Article 

    Google Scholar
     

  • Meléndez, J. J., González-Romero, R. L. & Antonelli, A. Quasiparticle bands and optical properties of SnSe from an ab initio method. Comp. Mater. Sci. 152, 107–112 (2018).

    Article 

    Google Scholar
     

  • Gruverman, A., Alexe, M. & Meier, D. Piezoresponse drive microscopy and nanoferroic phenomena. Nat. Commun. 10, 1661 (2019).

    Article 

    Google Scholar
     

  • Keilmann, F. & Hillenbrand, R. Close to-field microscopy by elastic gentle scattering from a tip. Philos. Trans. R. Soc. A. 362, 787–805 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, L.-D. et al. Ultralow thermal conductivity and excessive thermoelectric determine of advantage in SnSe crystals. Nature 508, 373–377 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, H. T. et al. Temperature dependence of the dielectric operate and demanding factors of -SnS from 27 to 350 Ok. Sci. Rep. 10, 18396 (2020).

  • Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metallic dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C. Strong State Phys. 5, 3540–3551 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, T., Lischka, Ok. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an oblique bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J., Zhang, S. & Li, J. Regular-to-topological insulator martensitic part transition in group-IV monochalcogenides pushed by gentle. NPG Asia Mater. 12, 2 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, F. et al. Imaging propagative exciton polaritons in atomically skinny WSe2 waveguides. Phys. Rev. B. 100, 121301 (2019).

  • Kockum, A. F., Miranowicz, A., Liberato, S. D., Savasta, S. & Nori, F. Ultrastrong coupling between gentle and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    Article 

    Google Scholar
     

  • Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy on the robust coupling restrict. Mild. Sci. Appl. 7, 17172 (2017).

    Article 

    Google Scholar
     

  • Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    Article 
    CAS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here