A carbon monoxide releasing steel natural framework nanoplatform for synergistic therapy of triple-negative breast tumors | Journal of Nanobiotechnology

0
4


  • Liu Q, Cheng A, Wang Y, Lv Y, Chen Z. Carbon monoxide in renal physiology, pathogenesis and therapy of renal illness. Curr Pharm Des. 2021;27:4253–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siracusa R, Voltarelli VA, Salinaro AT, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H(2)S: a trinacrium of bioactive gases within the mind. Biochem Pharmacol. 2022;202:115122.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular clean muscle cell harm revisited: from physiology and pharmacology. Biochem Pharmacol. 2022;199:115008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo Iacono L, Boczkowski J, Zini R, Salouage I, Berdeaux A, Motterlini R, Morin D. A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the manufacturing of reactive oxygen species. Free Radic Biol Med. 2011;50:1556–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang XX, Ke BW, Lu W, Wang BH. CO as a therapeutic agent: discovery and supply varieties. Chin J Nat Med. 2020;18:284–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim HH, Choi S. Therapeutic facets of carbon monoxide in heart problems. Int J Mol Sci. 2018;19:2381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Yu W, Cao J, Gao H. Harnessing carbon monoxide-releasing platforms for most cancers remedy. Biomaterials. 2020;255:120193.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling Okay, Males F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon monoxide and its managed launch: therapeutic utility, detection, and improvement of carbon monoxide releasing molecules (CORMs). J Med Chem. 2018;61:2611–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable logic in metal-organic frameworks for catalysis. Adv Mater. 2021;33:e2007442.

    Article 
    PubMed 

    Google Scholar
     

  • Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metallic-organic frameworks for chemical sensing gadgets. Mater Horiz. 2021;8:2387–419.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Okay, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing functions. Adv Mater. 2018;30:e1707634.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao D, Zhang W, Wu ZH, Xu H. Nanoscale metal-organic frameworks and their nanomedicine functions. Entrance Chem. 2021;9:834171.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Z, Zhao P, Zhang J, Yang T, Zhou G, Zhang D, Wang T, He Q. Clever steel carbonyl metal-organic framework nanocomplex for fluorescent traceable H(2) O(2)-triggered CO supply. Chemistry. 2018;24:11667–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough Okay, Jayaweera H, Corkill RE, Lauterbach J, et al. A metal-organic framework (MOF)-based multifunctional cargo automobile for reactive-gas supply and catalysis. Angew Chem Int Ed Engl. 2022;61:e202113909.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Guo B, Guo C, Meng Q, Liang J, Liu J. Zirconium-based metal-organic framework for environment friendly photocatalytic discount of CO2 to CO: the affect of doped steel ions. ACS Appl Mater Interfaces. 2020;12:24059–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips RM. Concentrating on the hypoxic fraction of tumours utilizing hypoxia-activated prodrugs. Most cancers Chemother Pharmacol. 2016;77:441–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson WR, Hay MP. Concentrating on hypoxia in most cancers remedy. Nat Rev Most cancers. 2011;11:393–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcu L, Olver I. Tirapazamine: from bench to scientific trials. Curr Clin Pharmacol. 2006;1:71–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Dang J, Liang Q, Yin L. Carbon monoxide (CO)-Strengthened cooperative bioreductive anti-tumor remedy by way of mitochondrial exhaustion and hypoxia induction. Biomaterials. 2019;209:138–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneemann A, Wan LF, Lipton AS, Liu YS, Snider JL, Baker AA, Sugar JD, Spataru CD, Guo J, Autrey TS, et al. Nanoconfinement of molecular magnesium borohydride captured in a bipyridine-functionalized metal-organic framework. ACS Nano. 2020;14:10294–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Li X, Ramella D, Zhao Y, Luan Y. An environment friendly and recyclable Cu@UiO-67-BPY catalyst for the selective oxidation of alcohols and the epoxidation of olefins. New J Chem. 2022;46:5839–47.

    Article 
    CAS 

    Google Scholar
     

  • Xu L, Luo Y, Solar L, Pu S, Fang M, Yuan R-X, Du H-B. Tuning the properties of the steel–natural framework UiO-67-bpy by way of post-synthetic N-quaternization of pyridine websites. Dalton Trans. 2016;45:8614–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen R, Zhang J, Chelora J, Xiong Y, Kershaw SV, Li KF, Lo PK, Cheah KW, Rogach AL, Zapien JA, Lee CS. Ruthenium(II) advanced included UiO-67 metal-organic framework nanoparticles for enhanced two-photon fluorescence imaging and photodynamic most cancers remedy. ACS Appl Mater Interfaces. 2017;9:5699–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filippousi M, Turner S, Leus Okay, Siafaka PI, Tseligka ED, Vandichel M, Nanaki SG, Vizirianakis IS, Bikiaris DN, Van Der Voort P, Van Tendeloo G. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int J Pharm. 2016;509:208–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JH, Bae C, Kim MJ, Track IH, Ryu JH, Choi JH, Lee CJ, Nam JS, Kim JI. A novel nucleolin-binding peptide for most cancers theranostics. Theranostics. 2020;10:9153–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano S, Fonseca N, Simoes S, Goncalves J, Moreira JN. Nucleolin-based concentrating on methods for most cancers remedy: from focused drug supply to cytotoxic ligands. Drug Discov As we speak. 2019;24:1985–2001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Müller JM, Alke A, Seidl C, Bruchertseifer F, Morgenstern A, et al. Remedy of peritoneal carcinomatosis by focused supply of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS ONE. 2009;4:e5715.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Essler M, Gärtner FC, Neff F, Blechert B, Senekowitsch-Schmidtke R, Bruchertseifer F, Morgenstern A, Seidl C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse mannequin of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging. 2012;39:602–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, Cai T, Van Dort ME, Ross BD, Hong H. In vivo concentrating on and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano. 2017;11:4315–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dongen G, Beaino W, Windhorst AD, Zwezerijnen GJC, Oprea-Lager DE, Hendrikse NH, van Kuijk C, Boellaard R, Huisman MC, Vugts DJ. The position of (89)Zr-Immuno-PET in navigating and derisking the event of biopharmaceuticals. J Nucl Med. 2021;62:438–45.

    Article 
    PubMed 

    Google Scholar
     

  • Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Perception into the event of PET radiopharmaceuticals for oncology. Cancers (Basel). 2020;12:1312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YA, Zhao CW, Zhu NX, Liu QK, Chen GJ, Liu JB, Zhao XD, Ma JP, Zhang S, Dong YB. Nanoscale UiO-MOF-based luminescent sensors for extremely selective detection of cysteine and glutathione and their utility in bioimaging. Chem Commun (Camb). 2015;51:17672–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLean S, Mann BE, Poole RK. Sulfite species improve carbon monoxide launch from CO-releasing molecules: implications for the deoxymyoglobin assay of exercise. Anal Biochem. 2012;427:36–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michel BW, Lippert AR, Chang CJ. A reaction-based fluorescent probe for selective imaging of carbon monoxide in residing cells utilizing a palladium-mediated carbonylation. J Am Chem Soc. 2012;134:15668–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim DH, Yoon HJ, Cha YN, Surh YJ. Function of heme oxygenase-1 and its response product, carbon monoxide, in manifestation of breast most cancers stem cell-like properties: notch-1 as a putative goal. Free Radic Res. 2018;52:1336–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke HM, Shrivastava S, Motterlini R, Sawle P, Chen D, Dorling A. Donor HO-1 expression inhibits intimal hyperplasia in unmanipulated graft recipients: a possible position for CD8+ T-cell modulation by carbon monoxide. Transplantation. 2009;88:653–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira A, Marguti I, Bechmann I, Jeney V, Chora A, Palha NR, Rebelo S, Henri A, Beuzard Y, Soares MP. Sickle hemoglobin confers tolerance to plasmodium an infection. Cell. 2011;145:398–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon T, Pogu S, Tardif V, Rigaud Okay, Rémy S, Piaggio E, Bach JM, Anegon I, Blancou P. Carbon monoxide-treated dendritic cells lower β1-integrin induction on CD8+ T cells and defend from kind 1 diabetes. Eur J Immunol. 2013;43:209–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Xie Z, deKrafft KE, Lin W. Doping metal-organic frameworks for water oxidation, carbon dioxide discount, and natural photocatalysis. J Am Chem Soc. 2011;133:13445–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prencipe G, Tabakman SM, Welsher Okay, Liu Z, Goodwin AP, Zhang L, Henry J, Dai H. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009;131:4783–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang D, Comeau A, Bowen WD, Mach RH, Ross BD, Hong H, Van Dort ME. Design and investigation of a [(18)F]-labeled benzamide by-product as a excessive affinity twin sigma receptor subtype radioligand for prostate tumor imaging. Mol Pharm. 2017;14:770–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Wei W, Barnhart TE, Jiang D, Cao T, Fan Okay, Engle JW, Liu J, Chen W, Cai W. ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021;48:2737–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here